21 research outputs found

    The revenge of asynchronous protocols: Wake-up Radio-based Multi-hop Multi-channel MAC protocol for WSN

    Get PDF
    International audienceSynchronized MAC protocols are now considered as the ultimate solution to access the medium in wireless sensor networks. They guarantee both high throughout and constant latency and achieve reasonable energy consumption performance. However, synchronization is achieved at the cost of a complex framework with low flexibility on its parameters that is not suitable for some network topologies or application requirements. By contrast, asynchronous MAC protocols are versatile by nature but suffer from the tradeoff between energy consumption and latency. However, the addition of Wake-up Radio (WuR) can reduce the energy consumption of such protocols while maintaining very low latency thanks to its always-on feature and ultra-low power consumption. In this article, we present WuR- based Multi-hop Multi-channel (W2M), an asynchronous MAC protocol for wireless sensor networks. We also provide a fair comparison with Time Synchronized Channel Hopping (TSCH) through an extensive simulation campaign based on Contiki-NG and Cooja. Our results show that in low traffic scenarios, W2M outperforms TSCH in reducing both the energy consumption and the latency (at least 68% of energy is saved), but at the cost of slightly lower reliability

    Nouveaux protocoles réseaux pour des réseaux IoT hétérogènes de Wake-up radio

    No full text
    The Internet of Things and the Wireless Sensor Networks are providing new ways to connect physical entities from the environment to the cybernetic world. This is made possible thanks to distributed embedded systems powered by batteries. The main challenge in these applications is to extend the battery lifetime as much as possible, which translates into minimizing the power consumption while keeping good quality network performance. In such systems, the wireless communication module is typically the most power-consuming one. As a consequence, traditional solutions to this challenge have used a duty-cycle approach at the medium access control layer (MAC) of the communication stack trading off latency for energy efficiency. Asynchronous protocols allow unscheduled communications, and their implementation is easy to deploy and operate. However, in many cases, synchronous protocols provide better performance. Wake-up radios are a new technology for wireless communications that allows holding asynchronous communications while favoring latency and energy consumption. This module is attached to a regular node as a secondary receiver that listens to the channel continuously while the main radio stays sleeping. Unfortunately, the sensitivity of the wake-up receiver is lower than that of the main radio, creating a range mismatch problem. The goal of this work is to propose new communication protocols taking advantage of this technology, aiming at keeping the low complexity of an asynchronous approach while allowing similar performance to that of a synchronous approach.L'Internet des objets et les rĂ©seaux de capteurs sans fil offrent de nouvelles façons de connecter des entitĂ©s physiques du monde rĂ©el au monde cybernĂ©tique. Ceci est rĂ©alisĂ© grĂące Ă  des systĂšmes embarquĂ©s distribuĂ©s, alimentĂ©s par des batteries. Le principal dĂ©fi dans ces applications est de prolonger autant que possible la durĂ©e de vie de la batterie, ce qui se traduit par une minimisation de la consommation d'Ă©nergie, tout en conservant des performances rĂ©seau de bonne qualitĂ©. Dans ces systĂšmes, le module de communication sans fil est gĂ©nĂ©ralement celui qui consomme le plus d'Ă©nergie. En consĂ©quence, les solutions traditionnelles Ă  ce dĂ©fi ont utilisĂ© une approche de « duty-cycle » au niveau de la couche de contrĂŽle d'accĂšs au support (MAC) de la pile de communication en sacrifiant la latence au profit de l'efficacitĂ© Ă©nergĂ©tique. Les protocoles asynchrones permettent des communications non programmĂ©es, et leur mise en Ɠuvre est facile Ă  dĂ©ployer et Ă  exploiter. Toutefois, dans plusieurs cas, les protocoles synchrones offrent de meilleures performances. La « wake-up radio » est une nouvelle technologie pour les communications sans fil qui permet de conserver des communications asynchrones tout en favorisant la latence et la consommation Ă©nergĂ©tique. Ce module est attachĂ© Ă  un nƓud rĂ©gulier comme rĂ©cepteur secondaire qui Ă©coute le canal en permanence pendant que la radio principale reste en veille. Malheureusement, la sensibilitĂ© de la « wake-up radio » est infĂ©rieure Ă  celle de la radio principale, ce qui crĂ©e un problĂšme de discordance de portĂ©e. L'objectif de ce travail est de proposer de nouveaux protocoles de communication tirant parti de cette nouvelle technologie, afin de conserver la simplicitĂ© d’une approche asynchrone tant en proposant de performances similaires aux approches synchrones

    Nouveaux protocoles réseaux pour des réseaux IoT hétérogènes de Wake-up radio

    No full text
    The Internet of Things and the Wireless Sensor Networks are providing new ways to connect physical entities from the environment to the cybernetic world. This is made possible thanks to distributed embedded systems powered by batteries. The main challenge in these applications is to extend the battery lifetime as much as possible, which translates into minimizing the power consumption while keeping good quality network performance. In such systems, the wireless communication module is typically the most power-consuming one. As a consequence, traditional solutions to this challenge have used a duty-cycle approach at the medium access control layer (MAC) of the communication stack trading off latency for energy efficiency. Asynchronous protocols allow unscheduled communications, and their implementation is easy to deploy and operate. However, in many cases, synchronous protocols provide better performance. Wake-up radios are a new technology for wireless communications that allows holding asynchronous communications while favoring latency and energy consumption. This module is attached to a regular node as a secondary receiver that listens to the channel continuously while the main radio stays sleeping. Unfortunately, the sensitivity of the wake-up receiver is lower than that of the main radio, creating a range mismatch problem. The goal of this work is to propose new communication protocols taking advantage of this technology, aiming at keeping the low complexity of an asynchronous approach while allowing similar performance to that of a synchronous approach.L'Internet des objets et les rĂ©seaux de capteurs sans fil offrent de nouvelles façons de connecter des entitĂ©s physiques du monde rĂ©el au monde cybernĂ©tique. Ceci est rĂ©alisĂ© grĂące Ă  des systĂšmes embarquĂ©s distribuĂ©s, alimentĂ©s par des batteries. Le principal dĂ©fi dans ces applications est de prolonger autant que possible la durĂ©e de vie de la batterie, ce qui se traduit par une minimisation de la consommation d'Ă©nergie, tout en conservant des performances rĂ©seau de bonne qualitĂ©. Dans ces systĂšmes, le module de communication sans fil est gĂ©nĂ©ralement celui qui consomme le plus d'Ă©nergie. En consĂ©quence, les solutions traditionnelles Ă  ce dĂ©fi ont utilisĂ© une approche de « duty-cycle » au niveau de la couche de contrĂŽle d'accĂšs au support (MAC) de la pile de communication en sacrifiant la latence au profit de l'efficacitĂ© Ă©nergĂ©tique. Les protocoles asynchrones permettent des communications non programmĂ©es, et leur mise en Ɠuvre est facile Ă  dĂ©ployer et Ă  exploiter. Toutefois, dans plusieurs cas, les protocoles synchrones offrent de meilleures performances. La « wake-up radio » est une nouvelle technologie pour les communications sans fil qui permet de conserver des communications asynchrones tout en favorisant la latence et la consommation Ă©nergĂ©tique. Ce module est attachĂ© Ă  un nƓud rĂ©gulier comme rĂ©cepteur secondaire qui Ă©coute le canal en permanence pendant que la radio principale reste en veille. Malheureusement, la sensibilitĂ© de la « wake-up radio » est infĂ©rieure Ă  celle de la radio principale, ce qui crĂ©e un problĂšme de discordance de portĂ©e. L'objectif de ce travail est de proposer de nouveaux protocoles de communication tirant parti de cette nouvelle technologie, afin de conserver la simplicitĂ© d’une approche asynchrone tant en proposant de performances similaires aux approches synchrones

    Nouveaux protocoles réseaux pour des réseaux IoT hétérogènes de Wake-up radio

    No full text
    L'Internet des objets et les rĂ©seaux de capteurs sans fil offrent de nouvelles façons de connecter des entitĂ©s physiques du monde rĂ©el au monde cybernĂ©tique. Ceci est rĂ©alisĂ© grĂące Ă  des systĂšmes embarquĂ©s distribuĂ©s, alimentĂ©s par des batteries. Le principal dĂ©fi dans ces applications est de prolonger autant que possible la durĂ©e de vie de la batterie, ce qui se traduit par une minimisation de la consommation d'Ă©nergie, tout en conservant des performances rĂ©seau de bonne qualitĂ©. Dans ces systĂšmes, le module de communication sans fil est gĂ©nĂ©ralement celui qui consomme le plus d'Ă©nergie. En consĂ©quence, les solutions traditionnelles Ă  ce dĂ©fi ont utilisĂ© une approche de « duty-cycle » au niveau de la couche de contrĂŽle d'accĂšs au support (MAC) de la pile de communication en sacrifiant la latence au profit de l'efficacitĂ© Ă©nergĂ©tique. Les protocoles asynchrones permettent des communications non programmĂ©es, et leur mise en Ɠuvre est facile Ă  dĂ©ployer et Ă  exploiter. Toutefois, dans plusieurs cas, les protocoles synchrones offrent de meilleures performances. La « wake-up radio » est une nouvelle technologie pour les communications sans fil qui permet de conserver des communications asynchrones tout en favorisant la latence et la consommation Ă©nergĂ©tique. Ce module est attachĂ© Ă  un nƓud rĂ©gulier comme rĂ©cepteur secondaire qui Ă©coute le canal en permanence pendant que la radio principale reste en veille. Malheureusement, la sensibilitĂ© de la « wake-up radio » est infĂ©rieure Ă  celle de la radio principale, ce qui crĂ©e un problĂšme de discordance de portĂ©e. L'objectif de ce travail est de proposer de nouveaux protocoles de communication tirant parti de cette nouvelle technologie, afin de conserver la simplicitĂ© d’une approche asynchrone tant en proposant de performances similaires aux approches synchrones.The Internet of Things and the Wireless Sensor Networks are providing new ways to connect physical entities from the environment to the cybernetic world. This is made possible thanks to distributed embedded systems powered by batteries. The main challenge in these applications is to extend the battery lifetime as much as possible, which translates into minimizing the power consumption while keeping good quality network performance. In such systems, the wireless communication module is typically the most power-consuming one. As a consequence, traditional solutions to this challenge have used a duty-cycle approach at the medium access control layer (MAC) of the communication stack trading off latency for energy efficiency. Asynchronous protocols allow unscheduled communications, and their implementation is easy to deploy and operate. However, in many cases, synchronous protocols provide better performance. Wake-up radios are a new technology for wireless communications that allows holding asynchronous communications while favoring latency and energy consumption. This module is attached to a regular node as a secondary receiver that listens to the channel continuously while the main radio stays sleeping. Unfortunately, the sensitivity of the wake-up receiver is lower than that of the main radio, creating a range mismatch problem. The goal of this work is to propose new communication protocols taking advantage of this technology, aiming at keeping the low complexity of an asynchronous approach while allowing similar performance to that of a synchronous approach

    Nouveaux protocoles réseaux pour des réseaux IoT hétérogènes de Wake-up radio

    No full text
    The Internet of Things and the Wireless Sensor Networks are providing new ways to connect physical entities from the environment to the cybernetic world. This is made possible thanks to distributed embedded systems powered by batteries. The main challenge in these applications is to extend the battery lifetime as much as possible, which translates into minimizing the power consumption while keeping good quality network performance. In such systems, the wireless communication module is typically the most power-consuming one. As a consequence, traditional solutions to this challenge have used a duty-cycle approach at the medium access control layer (MAC) of the communication stack trading off latency for energy efficiency. Asynchronous protocols allow unscheduled communications, and their implementation is easy to deploy and operate. However, in many cases, synchronous protocols provide better performance. Wake-up radios are a new technology for wireless communications that allows holding asynchronous communications while favoring latency and energy consumption. This module is attached to a regular node as a secondary receiver that listens to the channel continuously while the main radio stays sleeping. Unfortunately, the sensitivity of the wake-up receiver is lower than that of the main radio, creating a range mismatch problem. The goal of this work is to propose new communication protocols taking advantage of this technology, aiming at keeping the low complexity of an asynchronous approach while allowing similar performance to that of a synchronous approach.L'Internet des objets et les rĂ©seaux de capteurs sans fil offrent de nouvelles façons de connecter des entitĂ©s physiques du monde rĂ©el au monde cybernĂ©tique. Ceci est rĂ©alisĂ© grĂące Ă  des systĂšmes embarquĂ©s distribuĂ©s, alimentĂ©s par des batteries. Le principal dĂ©fi dans ces applications est de prolonger autant que possible la durĂ©e de vie de la batterie, ce qui se traduit par une minimisation de la consommation d'Ă©nergie, tout en conservant des performances rĂ©seau de bonne qualitĂ©. Dans ces systĂšmes, le module de communication sans fil est gĂ©nĂ©ralement celui qui consomme le plus d'Ă©nergie. En consĂ©quence, les solutions traditionnelles Ă  ce dĂ©fi ont utilisĂ© une approche de « duty-cycle » au niveau de la couche de contrĂŽle d'accĂšs au support (MAC) de la pile de communication en sacrifiant la latence au profit de l'efficacitĂ© Ă©nergĂ©tique. Les protocoles asynchrones permettent des communications non programmĂ©es, et leur mise en Ɠuvre est facile Ă  dĂ©ployer et Ă  exploiter. Toutefois, dans plusieurs cas, les protocoles synchrones offrent de meilleures performances. La « wake-up radio » est une nouvelle technologie pour les communications sans fil qui permet de conserver des communications asynchrones tout en favorisant la latence et la consommation Ă©nergĂ©tique. Ce module est attachĂ© Ă  un nƓud rĂ©gulier comme rĂ©cepteur secondaire qui Ă©coute le canal en permanence pendant que la radio principale reste en veille. Malheureusement, la sensibilitĂ© de la « wake-up radio » est infĂ©rieure Ă  celle de la radio principale, ce qui crĂ©e un problĂšme de discordance de portĂ©e. L'objectif de ce travail est de proposer de nouveaux protocoles de communication tirant parti de cette nouvelle technologie, afin de conserver la simplicitĂ© d’une approche asynchrone tant en proposant de performances similaires aux approches synchrones

    Nouveaux protocoles réseaux pour des réseaux IoT hétérogènes de Wake-up radio

    No full text
    The Internet of Things and the Wireless Sensor Networks are providing new ways to connect physical entities from the environment to the cybernetic world. This is made possible thanks to distributed embedded systems powered by batteries. The main challenge in these applications is to extend the battery lifetime as much as possible, which translates into minimizing the power consumption while keeping good quality network performance. In such systems, the wireless communication module is typically the most power-consuming one. As a consequence, traditional solutions to this challenge have used a duty-cycle approach at the medium access control layer (MAC) of the communication stack trading off latency for energy efficiency. Asynchronous protocols allow unscheduled communications, and their implementation is easy to deploy and operate. However, in many cases, synchronous protocols provide better performance. Wake-up radios are a new technology for wireless communications that allows holding asynchronous communications while favoring latency and energy consumption. This module is attached to a regular node as a secondary receiver that listens to the channel continuously while the main radio stays sleeping. Unfortunately, the sensitivity of the wake-up receiver is lower than that of the main radio, creating a range mismatch problem. The goal of this work is to propose new communication protocols taking advantage of this technology, aiming at keeping the low complexity of an asynchronous approach while allowing similar performance to that of a synchronous approach.L'Internet des objets et les rĂ©seaux de capteurs sans fil offrent de nouvelles façons de connecter des entitĂ©s physiques du monde rĂ©el au monde cybernĂ©tique. Ceci est rĂ©alisĂ© grĂące Ă  des systĂšmes embarquĂ©s distribuĂ©s, alimentĂ©s par des batteries. Le principal dĂ©fi dans ces applications est de prolonger autant que possible la durĂ©e de vie de la batterie, ce qui se traduit par une minimisation de la consommation d'Ă©nergie, tout en conservant des performances rĂ©seau de bonne qualitĂ©. Dans ces systĂšmes, le module de communication sans fil est gĂ©nĂ©ralement celui qui consomme le plus d'Ă©nergie. En consĂ©quence, les solutions traditionnelles Ă  ce dĂ©fi ont utilisĂ© une approche de « duty-cycle » au niveau de la couche de contrĂŽle d'accĂšs au support (MAC) de la pile de communication en sacrifiant la latence au profit de l'efficacitĂ© Ă©nergĂ©tique. Les protocoles asynchrones permettent des communications non programmĂ©es, et leur mise en Ɠuvre est facile Ă  dĂ©ployer et Ă  exploiter. Toutefois, dans plusieurs cas, les protocoles synchrones offrent de meilleures performances. La « wake-up radio » est une nouvelle technologie pour les communications sans fil qui permet de conserver des communications asynchrones tout en favorisant la latence et la consommation Ă©nergĂ©tique. Ce module est attachĂ© Ă  un nƓud rĂ©gulier comme rĂ©cepteur secondaire qui Ă©coute le canal en permanence pendant que la radio principale reste en veille. Malheureusement, la sensibilitĂ© de la « wake-up radio » est infĂ©rieure Ă  celle de la radio principale, ce qui crĂ©e un problĂšme de discordance de portĂ©e. L'objectif de ce travail est de proposer de nouveaux protocoles de communication tirant parti de cette nouvelle technologie, afin de conserver la simplicitĂ© d’une approche asynchrone tant en proposant de performances similaires aux approches synchrones

    Selecting Parents with Wake-Up Radios for Load Balancing in RPL

    No full text
    International audienceWake-Up Radios is an emerging technology, aiming at pushing forward the frontiers of energy efficiency without trading it off for latency nor reliability. Extending the lifetime of the nodes as much as possible is one of the main goals in Multi-hop Wireless Sensor Networks. The Routing Protocol for Low Power and Lossy Networks (RPL) is commonly used in these applications. However, there is still an open problem in its design when it comes to achieving both stability and efficient routing at the same time. In this article, we present Load Balancing Parent Selection (LoBaPS), an algorithm to select opportunistically the next hop, based on RPL. It capitalizes on the Wake-Up Radio and its always-on feature, as well as its Ultra-Low Power consumption. We compare the performance of LoBaPS with that of W-MAC, a reference protocol that uses Wake-Up Radio and supports RPL in its traditional way. The results are obtained through simulations in COOJA for a network of nodes running ContikiOS, and show that the lifetime can be improved up to 55%, while the Packet Delivery Ratio (PDR) can raise a maximum of 20%, keeping a reasonable level of latency. In addition, the network is more robust to node shutdowns and requires less control overhead

    A Performance Study of the Behavior of the Wake-Up Radio in Real-World Noisy Environments

    No full text
    Wake-Up Radio (WuR) is a cutting-edge technology for the Internet of Things that is going to change the way end-devices communicate. Asynchronous wireless communications can benefit from WuR to reduce both energy consumption and latency comparatively to well-known duty-cycled solutions. In this article, we present an experimental platform using an existing WuR prototype and analyze its behavior when it is subject to radio interference. We implemented for the first time clear channel assessment capabilities and show that it can improve the packet delivery ratio by up to 10% on average. In particular, it can improve it from 25% up to 85% for internal interference. Besides, we experimentally extract some key physical values of this technology to provide inputs for WuR-based simulations and analytical models. Finally, we analyze the overall current consumption of a simple application to gain new insights into the WuR behavior. In low traffic scenarios, our results show that optimizing further the communication protocol stack will not significantly increase the lifetime of end-devices
    corecore